Solving Distribution Challenges in Bike Share Schemes

Effective distribution, in some of the best Bike Share Schemes, require immense amounts of citywide data to be captured, processed and used. Increasingly, schemes around the world are using city data to not only optimise its redistribution but to also show complete visibility to its users as to where the bikes are on its system map.

It’s how Bike Share Schemes use this data that drives value for operators, riders and cities. Bike Share Scheme operators are often familiar with rider statistics and patterns but the challenge is to use this data to accelerate growth within a scheme.

Tracking growth and stimulating growth are often two very different things. At the heart of new growth is rider experience. Bike Share Schemes are challenged to offer a consistent rider experience across a city while ensuring that using a Bike Share Scheme is easy, convenient and enjoyable for the rider. A positive and consistent Bike Share Scheme begins and ends with two questions:

 

  1. “Can I get a bike where I want one?”
  2. “Can I dock my bike at the end of my journey?”

 

If a Bike Share Scheme can guarantee these two things, it is likely that a rider will have a positive riding experience. When a rider can borrow a bike and dock it, they are more likely to use the scheme again and make it part of their routine.

That’s good for the Bike Share Scheme as it will help to grow overall ridership and new people will experience the city using shared bikes. A Bike Share Scheme with an active and growing ridership is able to invest and expand its schemes.

The data available in a city can be used to ensure that riders can access bikes and docks where and when they want them. Different days of the week, weather, events, seasons, local conditions and scenarios, and a whole range of criteria can shape how a Bike Share Scheme is used.

On a rare rainy day in Los Angeles, people may not cycle at all. In Amsterdam, there may only be a slight variance in usage patterns. At the same time, different events can be connected like a sunny day in a city, matched with a train drivers strike and major sporting event being held in one area of the city. All of these factors can influence how a scheme is functioning and where more or less bikes are needed.

Artificial Intelligence (AI) can be an excellent tool for simplifying Bike Share Scheme operations while using the power of data to drive decision making. AI can process a variety of data both historically and in real-time
to deliver actionable insights for Bike Share Scheme operators. Operators gain visibility into all of the criteria shaping a cityscape and benefit from useful insights to optimise bike distribution to match changing conditions.

AI accelerates how decisions are made by operators while taking the guess work out of bike distribution. The AI technology can predict peak times up to 12 hours in advance, enabling operators to manage supply and meet requirements in those areas. This ultimately leads to bikes and docks being available and riders getting a better Bike Share experience.

 

To find out more about the role data and AI has on a Bike Share Scheme, read our full whitepaper on ‘How to Grow a Smart City Bike Share Scheme’

 

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *